Prof. Dr. P. L.Nayak
In this era of many astonishing industrial develop- ments, probably no industry has under gone such rapid growth and development as the plastics industry. According to most authorities in this field, the plastics industry really began in 1868. A young American printer, named John Wesley Hyatt, was searching for a new material to be used as a substitute for ivory in the making of billiard balls.
This new plastic was called Bakelite. Many new plastics have been made since Bakelite. Production of plastics has increased over 2000% since Bakelite was first produced, and there are now more than twenty known types. Research along the lines of plastics has given a great impetus to research and invention in many other different fields of endeavor. Millions of dollars are spent yearly in plastics research, trying to find new plastics and to improve the existing ones. Much research will be done in the future to lower the cost of producing plastics so that their consumption will become greater. In spite of the varied and widespread application of plastics in practically every phase of everyday life, the possibilities of this wonderful new material have been by no means exhausted. It seems safe to say that if the application and use of plastics continue to increase at the present rate, we may be living in a “Plastics Age.”
An apt definition of plastics has been given by the head of the Monsanto Plastics Research who says, “Plastics are materials that, while being processed, can be pushed into almost any desired shape and then retain that shape.”
The major chemicals used to make plastic resins pose serious risks to public health and safety. Many of the chemicals used in large volumes to produce plastics are highly toxic. Some chemicals, like benzene and vinyl chloride, are known to cause cancer in humans; many tend to be gases and liquid hydrocarbons, which readily vaporize and pollute the air. Many are flammable and explosive. Even the plastic resins themselves are flammable and have contributed to numerous chemical accidents. The production of plastic emits substantial amounts of toxic chemicals (eg. ethylene oxide, benzene and xylenes) to air and water. Many of the toxic chemicals released in plastic production can cause cancer and birth defects and damage the nervous system, blood, kidneys and immune systems. These chemicals can also cause serious damage to ecosystems.
Ethylene oxide is used as a sterilant in hospitals. It is also the principle metabolite of ethane, a precursor to polyethylene plastics and other synthetic chemicals. Ethylene oxide can be measured by gas chromatography in air or biological specimens. Ethylene oxide reacts in the body with hemoglobin.
Many food containers for meats, fish, cheeses, yogurt, foam and clear clamshell containers, foam and rigid plates, clear bakery containers, packaging “peanuts,” foam packaging, audio cassette housings, CD cases, disposable cutlery, and more are made of polystyrene. J. R. Withey in Environmental Health Perspectives 1976 Investigated styrene and vinyl chloride monomer as being similar: “Styrene monomer readily migrates from food contained in it. It makes no difference whether the food or drink is hot or cold, or contains fat or water. ...It is not inconceivable that the animal body behaves as a ‘sink’ for styrene monomer until the lipid portion of the animal body either becomes saturated (although death would probably occur prior to this event) or the tissues are equilibrated at the same concentration as the exposure atmosphere.”
PVC is used for many products including: flooring, toys, tethers, clothing, raincoats, shoes, building products like windows, siding and roofing, hospital blood bags, IV bags and other medical devices. One of it’s major ingredients is chlorine. When chlorine-based chemicals are heated in the presence of hydrocarbons they create dioxin, a known carcinogen and endocrine disrupter. All PVC production releases dioxin. Other sources of dioxin are: production and use of chemicals, such as herbicides and wood preservatives, oil refining, burning coal and oil for energy, all car and truck exhaust.
Plasticizers are used in PVC that migrate into a blood recipient via the blood bag, IV bag, IV tubing. Children’s toys are made with pvc.
Anyone who receives blood, is on kidney dialysis, or has tubes either inserted in them or has liquid or air transported to their body is at risk. About 85% of medical waste is incinerated, accounting for ten percent of all incineration in the U.S. Approximately five to fifteen percent of medical waste needs to be incinerated to prevent infectious disease. The remaining waste, while not posing any danger from infectious pathogens, is very dangerous when burned. It contains high volumes of chlorinated plastics including PVC (also the toxic substances mercury, arsenic, cadmium and lead.)